HL-1 myocytes exhibit PKC and K(ATP) channel-dependent delta opioid preconditioning.

نویسندگان

  • Elisabeth M Seymour
  • Shu-Yung James Wu
  • Melissa A Kovach
  • Matthew A Romano
  • Jonathan R Traynor
  • William C Claycomb
  • Steven F Bolling
چکیده

BACKGROUND Opioid preconditioning protects the myocardium against ischemia/reperfusion (IR) injury. By enhancing cardiomyocyte viability, opioids can enhance cardiac function and recovery from IR injury during acute cardiac care. The myocyte model HL-1 is an immortalized, mouse atrial cell line that expresses functional delta-opioid receptors. The HL-1 myocyte may be useful for IR injury research exploring opioid cardioprotection. MATERIALS AND METHODS In study I, microplates of HL-1 were subjected to 10 min pre-treatment with either basal media, delta-opioid agonist DADLE(10uM), or DADLE(10uM) + delta-antagonist naltrindole (10uM). Study II treatment groups included PKC inhibitor chelerythrine (2uM), K(ATP) channel closer glybenclamide (100uM), or mitochondrial K(ATP) channel opener diazoxide (100uM) administered in various combinations followed by DADLE (10uM) or control. Microplates were subjected to normal oxygen/substrate conditions or ischemic (<1% 0(2)) and substrate deficient (10 uM 2-Deoxyglucose versus 10 mM glucose) conditions, then reperfused with normal oxygen and glucose-containing media. Microplate supernatants were subjected to lactate dehydrogenase (LDH) assay. RESULTS Compared to untreated control, the LDH assay showed significant reduction in opioid-only pretreated groups at all time points. These effects were attenuated with delta-opioid antagonist co-administration. Co-administration of non-selective K(ATP) channel closer glybenclamide and DADLE abolished DADLE cytoprotection, while selective mitochondrial K(ATP) opener diazoxide mimicked DADLE cytoprotection Co-administration of chelerythrine and DADLE significantly reduced chelerythrine cytotoxicity. CONCLUSION Delta-opioid preconditioning of HL-1 myocytes significantly decreased necrosis from in vitro simulated ischemia/reperfusion as measured by LDH release; this effect was reversed by delta-antagonist naltrindole. Cytoprotection was PKC and K(ATP) channel-dependent. HL-1 myocytes exhibit opioid-induced cytoprotection from IR injury, and present a novel model of pharmacologic preconditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection of cardiac myocytes via delta(1)-opioid receptors, protein kinase C, and mitochondrial K(ATP) channels.

The objective of the present study was to investigate the role of delta(1)-opioid receptors in mediating cardioprotection in isolated chick cardiac myocytes and to investigate whether protein kinase C and mitochondrial ATP-sensitive K(+) (K(ATP)) channels act downstream of the delta(1)-opioid receptor in mediating this beneficial effect. A 5-min preexposure to the selective delta(1)-opioid rece...

متن کامل

Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity.

Protein kinase C (PKC) is involved in the second messenger signaling cascade during ischemic and Ca(2+) preconditioning. Given that the pharmacological activation of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels also mimics preconditioning, the mechanisms linking PKC activation and mitoK(ATP) channels remain to be established. We hypothesize that PKC activity is important for the openi...

متن کامل

Morphine mimics preconditioning via free radical signals and mitochondrial K(ATP) channels in myocytes.

BACKGROUND We tried to determine whether morphine mimics preconditioning (PC) to reduce cell death in cultured cardiomyocytes and whether opioid delta(1) receptors, free radicals, and K(ATP) channels mediate this effect. METHODS AND RESULTS Chick embryonic ventricular myocytes were studied in a flow-through chamber while flow rate, pH, and O(2) and CO(2) tension were controlled. Cardiomyocyte...

متن کامل

Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C.

Pharmacological openers of mitochondrial ATP-dependent K+ (mitoKATP) channels mimic ischemic preconditioning, and such cardioprotection can be prevented by mitoKATP channel blockers. It is also known that protein kinase C (PKC) plays a key role in the induction and maintenance of preconditioning. To look for possible mechanistic links between these 2 sets of observations, we measured mitochondr...

متن کامل

Adenosine-mediated early preconditioning in mouse: protective signaling and concentration dependent effects.

OBJECTIVES Signaling in adenosine-mediated preconditioning is controversial. We examined roles of mitochondrial (mito) K(ATP) channels, protein kinase C (PKC) and nitric oxide (NO). METHODS Langendorff perfused C57/Bl6 mouse hearts were subjected to 20 min ischemia and 45 min reperfusion. Effects of adenosine-mediated preconditioning were assessed in the absence and presence of signaling inhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of surgical research

دوره 114 2  شماره 

صفحات  -

تاریخ انتشار 2003